
 

 

 

 

 

 

 

E n e r g y  R e s e a r c h  a n d  De v e l o p m e n t  Di v i s i o n  
F I N A L  P R O J E C T  R E P O R T  

ADVANCED 6.7 LITER NATURAL GAS 
ENGINE DEVELOPMENT 
 
 

DECEMBER 2015  
CEC-500-2016-004  

Prepared for: California Energy Commission 
Prepared by: Gas Technology Institute and Cummins Westport Inc. 



 

 

 

 

PREPARED BY: 
 
Primary Authors: 

John M. Pratapas, GTI 
Stephen Ptucha, CWI 

 
Gas Technology Institute 
1700 South Mount Prospect Road 
Des Plaines, IL 60018 
847-768-0500 
www.gastechnology.org 
 
Cummins Westport Inc. 
101 – 1750 West 75th Avenue 
Vancouver, British Columbia 
Canada V6P 6G2 
Tel: 1-604-718-8100 
www.cumminswestport.com 
 
Contract Number: PIR-12-017 
 
 
Prepared for: 
 
California Energy Commission 
 
Reynaldo Gonzalez 
Contract Manager 

 
Aleecia Gutierrez 
Office Manager 
Energy Generation Research Division 

 
Laurie ten Hope 
Deputy Director 
Energy Research and Development Division 

 
Robert P. Oglesby 
Executive Director 
 

DISCLAIMER 
 
This report was prepared as the result of work sponsored by the California Energy 
Commission. It does not necessarily represent the views of the Energy Commission, its 
employees or the State of California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warranty, express or implied, and 
assume no legal liability for the information in this report; nor does any party represent that 
the uses of this information will not infringe upon privately owned rights. This report has not 
been approved or disapproved by the California Energy Commission nor has the California 
Energy Commission passed upon the accuracy or adequacy of the information in this report. 



i 

ACKNOWLEDGEMENTS 

The authors wish to thank Mark Sublette, Technical Lead, Thomas Hodek, Program Leader, and 

the others on the program team at Cummins Westport Inc. for their immense help, expertise, 

and dedication throughout this project. 

  



ii 

PREFACE 

The California Energy Commission Energy Research and Development Division supports 

public interest energy research and development that will help improve the quality of life in 

California by bringing environmentally safe, affordable, and reliable energy services and 

products to the marketplace. 

The Energy Research and Development Division conduct public interest research, development, 

and demonstration (RD&D) projects to benefit California. 

The Energy Research and Development Division strives to conduct the most promising public 

interest energy research by partnering with RD&D entities, including individuals, businesses, 

utilities, and public or private research institutions. 

Energy Research and Development Division funding efforts are focused on the following 

RD&D program areas: 

 Buildings End-Use Energy Efficiency 

 Energy Innovations Small Grants 

 Energy-Related Environmental Research 

 Energy Systems Integration 

 Environmentally Preferred Advanced Generation 

 Industrial/Agricultural/Water End-Use Energy Efficiency 

 Renewable Energy Technologies 

 Transportation 

 

Advanced 6.7 Liter Natural Gas Engine Development is the final report for the Advanced 6.7 Liter 

Natural Gas Engine Development project (grant number PIR 12-017 conducted by Cummins 

Westport Inc.). The information from this project contributes to the Energy Research and 

Development Division’s Transportation Program. 

 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 

 

http://www.energy.ca.gov/research/
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ABSTRACT 

Engines that use natural gas produce fewer greenhouse gas emissions than those that use 

petroleum fuels. However, the current North American commercial vehicle market lacks a 

natural gas-powered engine compatible with Class 3 through 7 consumer vehicles. To meet this 

need, the research team designed, developed, and demonstrated an Alpha stage 6.7 liter natural 

gas engine designated as the ISB6.7 G. This engine was developed using stoichiometric cooled 

exhaust gas recirculation spark ignition technology capable of meeting the  United States 

Environmental Protection Agency and California Air Resources Board’s 2013 emission 

standards for nitrous oxides, carbon monoxide, nonmethane hydrocarbons, and particulate 

matter, as well as the United States Environmental Protection Agency’s 2017 greenhouse gas 

emission standards.  

The research team followed the Cummins process for developing, validating, and 

commercializing new engines to design the ISB6.7 G engine. During the Alpha design stage, the 

engine components were optimized through modeling analysis, bench tests, and engine 

laboratory experience with the goal of assessing the design capability to meet targets. Tests 

verified that the pre-Alpha and Alpha versions of the ISB6.7 G met these key performance 

targets.  

All original equipment manufacturer launch partners are committed to the ISB6.7 G and have 

either validated their installations using Alpha engines or will do so using Beta engines. The 

Beta phase and commercialization is not included in the scope of this project, but has already 

begun at the Cummins Rocky Mount Engine Plant Facility. 

 

 

 

 

Keywords: California Energy Commission, Natural Gas, stoichiometric, spark ignited, SESI, 

exhaust gas recirculation, 6.7 Liters, ISB6.7 G, ISL G, ISX12 G, CWI, engine, emissions, catalyst, 

compression, design  
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EXECUTIVE SUMMARY 

Introduction 

The market demand for natural gas-powered commercial vehicles has increased significantly in 

recent years. However, the lack of variety in the range of medium-and heavy-duty natural gas 

engines available to the North American commercial vehicle market compared to the range of 

available diesel engines is hindering continued expansion of natural gas market penetration. 

Currently, there is no natural gas engine available that is ideally suited for Class 3 through 7 

commercial vehicle markets. These vehicle classes typically use six to eight liter diesel engines 

with specific power output and peak torque requirements. Due to the lack of appropriately 

sized natural gas engines in the North America market, the natural gas market share is 

negligible in the majority of these market segments. Some original equipment manufacturers 

(OEMs) and end-users have elected to use larger engines, such as Cummins Westport Inc.’s 

(CWI) 8.9 liter ISL G engine, to enable partial natural gas engine penetration in commercial 

vehicles such as yard tractors, rear-engine style transit-buses, and Type D school buses. 

However, these engines are larger and more expensive than the engine models typically used in 

the Class 3 through 7 target markets, and as a result, may not be cost-effective for many 

customers in the target markets. In the majority of cases, installing larger engines is not possible 

due to physical packaging constraints in the engine bays of the vehicles used in these 

applications. 

To address the shortage of suitable natural gas engine technology available to the California 

and wider commercial vehicle markets and to optimize the performance and fuel economy of 

spark-ignited natural gas engines in Class 3 through 7 truck and bus applications, the research 

team developed a low-emission, high-performance, and high-efficiency 6.7 liter natural gas 

engine called the ISB6.7 G. The design of the ISB6.7 G is based on a Cummins ISB6.7 diesel 

engine platform integrated with CWI’s stoichiometric cooled exhaust gas recirculation spark 

ignition (SESI) technology. 

The research team’s new engine will provide a common platform for diesel and natural gas 

engine products in the North American medium-duty truck market for many years to come. 

The market penetration of natural gas engines for commercial vehicle applications will be 

enhanced when common diesel and natural gas base engine platforms are made available. By 

leveraging diesel engine integration work, common base engine platforms enable vehicle OEMs 

to minimize the cost of installing natural gas engines into vehicles. Minimizing OEM 

installation costs in turn lowers vehicle cost and price, which leads to increased availability of 

natural gas engines to end users and greater natural gas penetration in medium-duty 

commercial vehicle markets. 

Project Purpose 

The research team sought to design, develop, and demonstrate a pre-commercial spark ignited 

natural gas engine with ultra-low emissions, high performance, and best-in-class fuel economy 

for specific Class 3 through 7 truck and bus duty cycles. The emission, performance, and fuel 

economy benefits can be achieved by applying CWI’s SESI technology to the Cummins ISB6.7 
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diesel engine platform. In accordance with the Cummins-prescribed process for early stage 

technology development, performance was to be demonstrated through engine dynamometer 

testing and vehicle performance simulation modeling.  

The objectives were to: 

 Design, develop, and demonstrate (on an engine dynamometer) an Alpha stage 6.7 liter 

medium-duty natural gas engine that can be certified at or below United States 

Environmental Protection Agency (U.S. EPA) and California Air Resources Board (ARB) 

2013 emission standards 

•  Demonstrate a peak rating of 260 hp and a peak torque of 660 lbs-ft  

•  Improve fuel economy by 5 percent to 10 percent compared to CWI’s 5.9 liter lean burn 

spark ignition natural gas engine that CWI sold in the North American market through 

2009 

 Demonstrate  levels of greenhouse gas (GHG) emissions (carbon dioxide [CO2 , methane 

[CH 4, and nitrous oxide      ) that will enable emission certification at or below the 

U.S. EPA 2017 GHG emissions standards 

Project Results 

The research team achieved all the objectives of the project.  CWI decided to base the 

development of the new ISB6.7 G natural gas engine on the design of their ISB6.7 diesel engine.   

During the pre-Alpha phase of the development process, the researchers defined and verified 

the engine architecture through analytical models, calculations, and testing to achieve initial 

verification of performance targets. The knowledge gained from the pre-Alpha engine operation 

helped the research team optimize and create a production intent Alpha engine and engine 

component designs.  

The researchers upfitted approximately 5 field test vehicles with Alpha engines to operate in 

real world applications, such as school bus, transit/shuttle, delivery truck, yard spotter, and 

sweeper applications. Additional vehicles will be upfitted with Beta engines following expected 

beta engine production in 2016. Preliminary emission, fuel consumption, and GHG data from 

the engine test cells indicate that the engine design achieves the design targets for the program. 

Additional development work will continue throughout the program to further validate the 

engine design in preparation for emission certification and commercial product launch. 

This project ended with the Alpha engine design, build, and validation testing phase. Final 

development, which will include the Beta phase and will lead to commercialization, was not 

included in the scope of this project; however, CWI has already begun this development phase.  

The research team followed the Cummins process for developing, validating, and 

commercializing new engines. This process brought together a cross-functional Core Team with 

defined tasks during each phase of development. From the start of the development process to 

the commercialization of the product, CWI has engaged external stakeholders including 

Cummins Distribution and Service networks, government agencies (such as U.S. EPA and 
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ARB), and fleets to transfer the experimental results and other knowledge gained during the 

process. All truck OEM launch partners are committed to final development and have either 

validated their installations using Alpha engines or will do so using Beta engines. All OEMs 

will be required to comply with Cummins installation quality assurance requirements prior to 

approval for receiving production engine shipments to insure quality. 

The Cummins Rocky Mount Engine Plant facility is scheduled to commence building the Beta 

engine, which will be comprised of over 80 percent production parts, into the first half of 2016. 

New tooling for the ISB6.7 G cylinder head has been validated on the Alpha build engines and 

will be further validated on the upcoming Beta engine build prior to full production. 

CWI recommends proceeding with the next stage of the overall ISB6.7 G engine development, 

demonstration, and commercialization. CWI has initiated the next phase of the development 

work with an objective of continuing Beta engine build into early 2016  and adding Beta engines 

to the existing Alpha customer field demonstrations. This leads to commercial availability of the 

ISB6.7 G engine in a broad range of Class 5 to 7 vehicles, including medium-duty trucks, school 

buses, shuttle buses, yard tractors, and municipal works vehicles such as street sweepers in 

2016. CWI anticipates that the total expense to enable ISB6.7 G commercial availability will be in 

the range of $2 million to $4 million. 

Project Benefits 

The 6.7 liter natural gas engine can consume either compressed natural gas (CNG) or liquefied 

natural gas (LNG), although most applications are expected to use CNG stored fuel. Natural gas 

can produce fewer GHG emissions than petroleum fuels. ARB’s Low Carbon Fuel Standard 

helped forecast the GHG reductions associated with vehicles powered by the ISB6.7 G natural 

gas engine by calculating the full fuel cycle GHG emissions on a per vehicle per year basis. For 

the purpose of calculating total GHG emissions, a base case was identified for natural gas fuel 

supply, assuming that 90 percent of the natural gas fuel consumed by the ISB6.7 G-powered 

fleet will be derived from conventional natural gas fuel pathways and 10 percent from 

biomethane pathways. An upside case, which assumes that 50 percent of the fuel consumed by 

the fleet will be derived from biomethane pathways, was also calculated. The predicted GHG 

emission reductions of the ISB6.7 G (relative to a diesel vehicle) are 31.9 percent for the base 

case (10 percent renewable fuel) and 56.2 percent for the upside case (50 percent renewable 

fuel). 

The ISB6.7 G engine is expected to increase natural gas products available to the California 

commercial vehicle market by introducing a spark-ignited, natural gas engine product 

optimized for both performance and fuel economy in Class 3 through 7 truck and bus 

applications. By developing and subsequently commercializing a low-emission, high-

performance, and high-efficiency 6.7 liter natural gas engine for these applications, a viable 

alternative to diesel engines currently serving this market will become available. The natural 

gas engines currently available to serve these applications, consisting mostly of after-market 

conversions, are not considered optimized for fuel efficient performance. Accordingly, the 

natural gas ratepayers who purchase the proposed new ISB6.7 G natural gas engines in the 

future are expected to directly benefit from cost savings per mile traveled. This high-efficiency 
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engine will also reduce the emissions of criteria pollutants and GHG emissions per mile 

traveled.  

Natural gas ratepayers will also benefit from consuming less diesel fuel as the ISB6.7 G engine 

displaces diesel in the target market application. Natural gas use will lessen petroleum imports 

used for the affected duty cycle market. This reduced demand for diesel should enable greater 

gasoline production from capacity constrained refineries, which should help mitigate volatility 

in gasoline prices.  

Commercial availability of the ISB6.7 G engine will help enable natural gas adoption in the 

Class 5 through Class 7 truck market as well as the school bus and shuttle bus markets. This 

increased availability will significantly increase both the demand for new natural gas fueling 

stations and the use of existing ones along with promotion and incentives for biomethane (or 

renewable natural gas) production. The demand for more natural gas fueling stations will create 

jobs in California, which in turn will create permanent jobs related to the collection, treatment, 

dispensing, and distribution of bio methane for transportation purposes from renewable 

resources including landfills, dairies, and sewage treatment facilities.  

 



1 

CHAPTER 1: 
Task 2 – Pre-Alpha Engine Design, Build, and Test 

1.1 Pre-Alpha Design and Build 

The pre-Alpha phase of the development process is used to define and verify engine 

architecture. In addition to analytical models and calculations, it is common (but not 

mandatory) at this phase to provide evidence by testing that all performance targets are 

achievable.  

The first step in architecture verification is achieved through the application of analysis tools. 

Analysis tools used prior to engine build and test include:  

• Design Failure Mode Effects Analysis (DFMEA) 

• Computer Assisted Design (CAD) layout (Pro Engineer by Parametric Technologies) 

• Engine performance model (GT-Power by Gamma Technologies) 

• Combustion modeling (KIVA by Los Alamos National Lab)  

• Finite Element Analysis (FEA)  

• Computational Fluid Dynamics (CFD)  

In parallel to the above analysis activity, a mule engine was built to assist in the correlation of 

analysis data with empirical test data. The mule engine is an engine prepared for use in a test 

cell only, with limited expectations for durability. Hardware for the mule engine was prepared 

and built as follows:  

• An ISB6.7 diesel engine was obtained as a starting point.  

• Cylinder heads were machined from diesel castings and components. The spark plug 

bore was specially machined, but all other features are diesel-like.  The diesel valve train 

is used.  

• The valve cover is an ISB6.7 diesel cover with special features added (welded & 

machined) in place to accommodate spark plug coils. 

• The wire harness used is a modified ISLG harness. 

• The electronic control module (ECM) and ignition control module (ICM) are mounted 

onto a fabricated steel plate.  

• The turbocharger used is of the correct family (appropriate wheel sizes defined by GT 

Power model) but without any other enhancements. The turbo mounted to Pre-Alpha 

hardware utilizes prototype designs that accurately simulate engine performance, but 

may not represent production-intent geometry. In addition, pre-Alpha hardware may be 
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manufactured using non-production processes. The turbo mounts to an ISB6.7 diesel 

exhaust manifold using an adapter plate.  

• Several variants of pistons were made from diesel aluminum flat tops wherein the 

piston bowl is machined using the output of KIVA modeling. Five different piston bowls 

were manufactured for use in narrowing the scope of the pre-Alpha bowl.  

• The fuel module is a modified ISLG fuel module mounted using a special adapter plate.  

Using the mule engine, the team was able to provide useful data to assist in the design of the 

pre-Alpha engines. Piston design was reduced from five versions on the mule to two for pre-

Alpha testing. The diesel exhaust gas recirculation (EGR) system was verified. Peak torque and 

power were also verified. Heat rejection was measured, noted, and used for chassis planning. 

Various temperatures were recorded and used for the pre-Alpha design.  

The pre-Alpha engines differed from the mule engine in that pre-Alpha engines were intended 

to:  

• Be more robust. 

• Be capable of being used in the test cell and in vehicles.  

The following are key differences (improvements) made from the mule version of the engine to 

the pre-alpha version:  

• Steel pistons 

• Newly designed fuel module 

• Closed crankcase ventilation  

• Newly designed 3-piece exhaust manifold (Turbocharger mounts directly to the 

manifold) 

• Cylinder head with production-intent (natural gas) components  

With the design information mentioned above, all seven pre-Alpha engines were built at our 

production location on the high volume assembly line:  

• To give manufacturing personnel experience with the new hardware and allow feedback 

so the design team can apply ‘design for assembly’ changes in the Alpha stage. 

• To provide an engine with consistent assembly process to create more uniformity. 

• To prevent mistakes generated with an off-line process. 

During the pre-Alpha process, engines were tested in three locations:  

• Cummins Technical Center, performance cell, Columbus, Indiana 

• Intertek Testing, endurance cell, San Antonio, Texas 
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• Freightliner truck, model M2, Columbus, Indiana 

Engine testing in the performance cell verified many of the critical performance and mechanical 

targets (shown in Table 1) for the following test and design attributes:  

• Primary heat rejection and exhaust temperature data 

• Piston selection 

• Piston pin joint abuse test  

• Preliminary oil consumption data 

• Verify turbocharger wheel match 

• Verify turbine inlet temperatures  

• Verify fuel module function 

• EGR system verification 

• Combustion face temperature measurements 

• Develop/tune spark timing, knock, and misfire algorithms 

1.2 Pre-Alpha Testing 

The pre-Alpha phase of the project consists of both performance and mechanical development 

testing. This section summarizes the testing. 

1.2.1  Performance Testing 

A key activity for pre-Alpha is to verify that the engine architecture selected will deliver the 

required performance. A pre-Alpha engine was installed into a dedicated natural gas test cell at 

Cummins Technical Center, Columbus, Indiana. Figure 1 and Figure 2 are photos of the 

installation. 
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Figure 1: Pre-Alpha Engine Installed Cummins Tech Center 

 

Photo Credit: Cummins Westport Inc. 
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Figure 2: Pre-Alpha Engine Installed at Cummins Tech Center 

 

Photo Credit: Cummins Westport Inc. 

 

1.2.1.1 Verification of Critical Engine Performance Targets 

The engine has specific critical performance deliverables that were verified early in the pre-

Alpha process. These targets are defined by gathering critical inputs from our key customers, 

also known as the voice of the customer. Table 1 shows our targets and a result of our testing.                                                              

Table 1:  Key Performance Targets and Status 

Voice of the Customer DELIVERABLE REQUIREMENT / 
DELIVERABLE 

R/Y/G PRE-ALPHA TEST 
RESULT:  
(Verification Method) 

Emissions - North America   U.S. EPA / ARB / EMD+   Status: Green 
Emissions for North 
America achieved using 
same catalyst as is used 
on ISLG engine. This will 
be the prime path for the 
ISB6.7G. 

GREENHOUSE GAS - CH4 
EMISSIONS 

Meet 2nd phase (2016) 
U.S. EPA MHD GHG 
regulations at launch 

  Status: Green 
To meet GHG target, 
CCV is required. CCV will 
be considered prime path 
moving forward.  

NOTE: This will be re-
examined at Alpha stage 
to determine if further 
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Voice of the Customer DELIVERABLE REQUIREMENT / 
DELIVERABLE 

R/Y/G PRE-ALPHA TEST 
RESULT:  
(Verification Method) 

'tuning' will allow us to 
meet the GHG target 
without CCV.  

Noise  < 80 dBA drive-by   Status: Green 
Drive-by testing 
conducted at Cummins 
Noise Facility in 
Walesboro, Indiana. The 
testing, which used two 
different truck 
installations, 
demonstrated a pass per 
U.S. EPA test standards. 
The significance of the 
test is that, going 
forward, no additional 
noise abatement 
treatment or strategy will 
be pursued.  

Peak Power  260 hp @ 2400    Status: Green 
Engine power achieved 
using worse case 
conditions (max water 
and air temperatures). 

Peak Torque - North America 660 lb-ft @1600 rpm   Status: Green 
Engine torque achieved 
using worst case 
conditions (max water 
and air temperatures).  
NOTE: Turbocharger 
margin at peak torque is 
narrow, but acceptable. 
More attention to air 
handling altitude effects 
will be key focus at Alpha 
stage.  

Responsiveness  1 & 2 second torque 
capability per VPP 

  Status: Green 
Throttle response 
demonstrated. 

Heat Rejection  Combined heat rejection 
(coolant + CAC) no more 
than 35% greater than 
same ISB6.7 diesel 
ratings 

 Status: Yellow 

Heat rejection to coolant 
was higher than 
anticipated (~40% higher 
than diesel equivalent). 
This information is being 
shared with major OEM 
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Voice of the Customer DELIVERABLE REQUIREMENT / 
DELIVERABLE 

R/Y/G PRE-ALPHA TEST 
RESULT:  
(Verification Method) 

customers to ensure that 
proper cooling system 
design is carried out with 
anticipation of higher 
than expected heat 
rejection.  

Fuel Economy 15% less than ISB    Status: Yellow 
Although fuel 
consumption is noted and 
recorded at pre-Alpha 
stage, rigorous fuel 
economy measures and 
tuning were postponed 
until the Alpha phase.  
Fuel consumption is 
recognized as a critical 
deliverable and will be a 
key focus in Alpha.  

Transmissions Compatibility North America: Allison 
Auto 2000 & 3000 
Series. 

  Status: Green 
Transmission tuning was 
conducted in chassis 
during pre-Alpha phase. 
No major issues 
encountered.  
NOTE: It was determined 
that the Allison 2500 
series transmission will 
have some torque 
limitations that will 
require specific tuning in 
Alpha.  

Photo Credit: Cummins Westport Inc. 
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Figure 3: Demonstrated Engine Torque Curves 

 

Photo Credit: Cummins Westport Inc. 

 

1.2.1.2 Engine Performance Tuning 

The pre-Alpha engine was used to conduct critical tuning exercises in preparation for the Alpha 

stage of the program. The key focus of the performance tuning was to optimize the engine’s 

ability to manage knock and misfire. This is achieved by balancing spark timing and EGR flow 

and temperature. 

1.2.1.3 Emissions Testing 

U.S. EPA emission limits were comfortably achieved during the testing and no further work was 
conducted. Significant focus will be dedicated to further emission work at the Alpha phase. See 

Table 2 and  

Table 3 for pre-Alpha emission testing results. 
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Table 2:  Emission Limits 

 NOx 

(g/hp-hr) 

CO 

(g/hp-hr) 

NMHC 

(g/hp-hr) 

PM 

(g/hp-hr) 

GHG 

(g/hp-hr) 

Limit 0.2 15.5 0.14 0.01 576 

Deterioration 

Factor (DF) 

1.358 2.05 1 1 1 

Limit with DF 0.147 7.56 0.14 0.01 576 

Photo Credit: Cummins Westport Inc. 

 

Table 3:  Pre-Alpha Emission Results 

 NOx 

(g/hp-hr) 

CO 

(g/hp-hr) 

NMHC 

(g/hp-hr) 

PM 

(g/hp-hr) 

GHG 

(g/hp-hr) 

Cold Hot 

Emissions Test 

Federal Test 

Procedure 

0.106 2.29 0.003 0.0004 505 

RMCSET 0.012 1.02 0.0002 0.0003 468.6 

Limit 0.2 15.5 0.14 0.01 576 

Limit with DF 0.147 7.56 0.14 0.01 576 

Photo Credit: Cummins Westport Inc. 

 

1.2.2 Mechanical Development Testing 

In addition to engine performance, there were a number of significant mechanical development 

exercises conducted on the pre-Alpha hardware. All of these activities were conducted to 

provide confidence that our Alpha design intent is correct. Below is a list of those activities:  

• Spark plug temperature measurements 

• Valve cover vibration measurements 

• Fuel system vibration 

• Cylinder head temperature measurements (combustion face)  

• Coolant flow 

• Piston pin seizure test 

• Idle oil consumption 

• Urban bus duty cycle analysis (for turbocharger compressor wheel reliability analysis)  

• Thermal cycle test (early cylinder head reliability – 750 hours) 
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CHAPTER 2: 
Task 3 – Alpha Engine Design and Build 

The goal was to apply knowledge gained from the concept engine operation and begin 

optimizing the engine and engine component designs based on modeling analysis, bench tests, 

and engine laboratory experience. This leads to the building of representative engines to further 

assess the design capability to meet targets.  

While early engine concept design used existing components wherever possible, the Alpha 

design strives for production intent design components. Accordingly, it represents the first 

design phase that focuses on creating component and sub-system designs for high-volume 

manufacturing. This chapter describes the Alpha design for the various major sub-systems that 

comprise the ISB6.7 G engine, as well as photos and CAD models of the overall Alpha engine 

design. 

2.1 Base Engine 

The Cummins ISB6.7 Diesel Engine is the Base Engine Platform for CWI’s Engine Development 

Program. Cummins initiated commercial availability of the ISB6.7 diesel engine in January 2013. 

See Figure 4 for a photo of the diesel engine.  

Figure 4:  ISB6.7 G Alpha Engine  

 

Photo Credit: Cummins Westport Inc. 
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CWI will retain the majority of the base engine for the ISB6.7 G Alpha design, including the 

cylinder block, crankshaft, connecting rods, main bearings, engine mounts, external accessories 

(for example, air compressors, alternators, starting motors, fan hubs, and so forth), and 

customer selectable options—such as flywheel housing, oil pan, and oil level gauge.  

CWI’s development of the ISB6.7 G engine focuses on unique designs for major engine 

subsystems, which are summarized below. 

2.2 Power Cylinder 

The ISB6.7 G engine requires a unique piston design capable of providing the required 

compression ratio, optimized for in-cylinder conditions with spark ignition combustion, and 

offering durability required when applying the SESI technology. CWI identified a number of 

candidate piston designs based on analytical modeling and assessed those designs based on 

concept engine testing. During the Alpha design process, the piston design was refined based 

on test data and further analytical modeling. The piston design selected is based on the best 

combustion rate predicted from combustion models, while ensuring that the design yields 

acceptable maximum cylinder head temperatures. Throughout the design process, finite 

element analysis and in-cylinder temperature measurements were used to quantify the piston’s 

peak operating temperatures. The resulting Alpha piston design and associated peak 

temperature distribution are shown in Figure 5. 

Figure 5:  Piston Temperature Distribution 

 

Photo Credit: Cummins Westport Inc. 
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2.3 Electronic Control System 

The electronic control system design is direct carry-over architecture from the ISL G and ISX12 G 

engines. The control system design consists of ECM, sensors, actuators, wire harnesses, and 

software and calibrations. 

During the Control System Alpha design phase, CWI concluded that no ECM hardware 

modifications were required. However, unique software and calibrations were required to 

enable certain electronic features that had not previously been developed for CWI’s natural gas 

engines and were unique to the ISB 6.7 diesel engine. The following is a list of unique features 

for the ISB6.7 G engine: 

 Switchable Governor Type: feature allows the OEM to select either a torque-

controlled or speed-controlled governor for the accelerator input.  

 Idle Shutdown - Ambient Temperature Override: feature overrides an engine 

shutdown initiated by the Idle Shutdown feature when the ambient air 

temperature is below a threshold. 

 Power Take Off Stationary Pumping: feature used when an automotive engine is 

used for pumping operations while the vehicle is stationary. 

 Road Speed Governor - Switched Maximum Vehicle Speed: feature allows the 

customer to use a switch to set a vehicle speed limit for two different maximum 

vehicle speeds.  

 Auxiliary shutdown: set up as an additional switched input for engine shutdown 

to the regular Engine Protection feature. 

Additional software and calibrations will be required to comply with the applicable on-board 

diagnostics (OBD) requirements; however, OBD-specific development is not included within 

the scope of the Alpha development. OBD development and validation will be conducted 

during the next phase of the ISB6.7G engine development program. 

2.4 Ignition System 

The ignition system consists of the following components: 

• ICM 

• Ignition harness 

• Ignition coils 

• Ignition coil extensions (to connect the ignition coil to the spark plug) 

• Spark plugs 

• Calibration 
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The ignition system architecture consists of coil-on-plug technology and an ICM that are 

consistent with CWI’s ISX G engine. While the ignition system architecture is identical to CWI’s 

existing ISX12 G engine, the design packaging of the ISB6.7 G engine presents unique 

challenges. For example, design layout and packaging studies for the 6.7 have driven packaging 

of the ICM in a different orientation and location on the engine than on the ISX12 G. On the 

ISB6.7 G, the ICM will be located on top of the engine, directly behind the fuel module 

assembly. This change is expected to improve and shorten the routing of the ICM harness as 

well as improve serviceability.  The ISB6.7 G ignition coils are mounted to the valve cover, 

which is directly above the spark plugs that are mounted in the cylinder head, with ignition coil 

extensions connecting the coils to the plugs. To accommodate the packaging limitations 

imposed by the air cleaner assembly, the ignition coil design provides minimal clearance above 

the valve cover while enabling ignition harness connections. Figure 6 and Figure 7 identify the 

ignition system components and their mounting configuration. (Note that this arrangement is 

nearly identical of that used on the ISX12 G engine with several parts being common.) 

The ignition harness has a new feature included in the design. The harness was enhanced with 

the addition of several grounding points to reduce radiated electronic noise emissions. The goal 

of the program is to meet CISPR 25, class 1 radiated emission levels (30 Volts per meter). 

Figure 6: Ignition System Hardware 

 

Photo Credit: Cummins Westport Inc. 
  

 

Ignition Coil 
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Extension 

Spark Plug Boot 
Adapter 
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Figure 7: Ignition Coils and Extensions Mounted to Valve Cover 

 

Photo Credit: Cummins Westport Inc. 

 

2.5 Cylinder Head and Valve Train 

The ISB6.7 G cylinder head is modified from the base diesel head to improve thermal fatigue 

life and to accommodate spark plugs rather than diesel fuel injectors. Spark plug bore 

machining takes the place of the injector bore. In addition, shallow ‘scalloped’ cuts are added to 

the combustion face of each cylinder to improve thermal fatigue characteristics of the design. 

Lastly, the cast properties have changed from the diesel norm of gray iron to an alloyed iron 

with molybdenum added to improve thermal fatigue strength.   

The ISB6.7 G valve train includes a number of changes to improve reliability. High temperature 

valve and seat insert materials improve reliability. In addition, valve rotators improve valve life. 

2.6 Air Handling System 

Due to the lower air flow requirements associated with stoichiometric combustion, the ISB6.7 G 

requires a smaller turbocharger than the base diesel engine. Therefore, the ISB6.7 G Alpha 

engine design required development of a unique turbocharger.  

Based on analytical modeling and concept engine test results, an optimal turbine casing size 

was selected. Using experience from previous gas engine projects, the ISB product will have a 

turbine housing that has higher temperature capability than any of its gas engine predecessors. 

The material to be used for the turbine housing is compacted graphite iron.  

The change to compacted graphite iron will require a significant analysis and validation effort 

to confirm the integrity of the change. In addition to the material change, other changes are 

incorporated into the turbocharger assembly to improve overall robustness (see Figure 8). 
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Figure 8: ISB6.7 G Turbocharger, Partial and Full Assembly Views 

 

Photo Credit: Cummins Westport Inc. 

 

2.7 Fuel System 

The ISB6.7 G fuel system is architecturally similar to the ISL G engine and incorporates natural 

gas fuel supply, pressure regulation, metering and control, charge air throttling and 

measurement, and EGR control and mixing functions. Many of these functions are either not 

required on the diesel base engine or are handled elsewhere on the diesel engine. As a result of 

combining all these critical functions in one module for the natural gas engine, the fuel supply 

module is inherently larger than the diesel fuel components that it replaces on the intake side of 

the engine. As a result of the larger space claim required for the natural gas fuel supply module, 

CWI performed numerous design iterations in conjunction with various truck and bus OEMs. 

Figure  shows an additional view of the module as mounted on the engine. 
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Figure 9: Alpha Fuel Module Mounted on Engine 

 

Photo Credit: Cummins Westport Inc. 

 

2.8  Three-Way Catalyst 

The ISB6.7 G engine uses a three-way catalyst (TWC) to treat NOx, CO, and hydrocarbon (HC) 

emissions. CWI’s 8.9 liter ISL G engine also uses a TWC for exhaust treatment. Early in the 

Alpha design, CWI investigated the feasibility of using the existing ISL G TWC with the 6.7 liter 

engine. Analysis and measurements performed on pre-Alpha engines confirm that the ISL G 

TWC is an acceptable emission solution for the 6.7. 

2.9  Closed Crankcase Ventilation System 

At Alpha design stage, the ISB6.7 G engine evaluated the use of a crankcase gas recirculation 

system to capture blow by gases that are often exhausted to atmosphere with a diesel engine. 

On natural gas engines, the crankcase emission gases contain a significant amount of unburned 

methane gas.  The objective of the recirculation system is to recirculate the unburned methane 

back through the engine rather than allowing it to escape to the atmosphere. 

Although the engine is likely able to meet the 2016 North America Greenhouse Gas limits 

without a crankcase gas recirculation system, using the Closed Crankcase Ventilation system 

could provide additional margin for emission control and in turn allow the performance 

engineering team to better tune overall engine combustion. The ISB6.7 G system routes the 

gases from the valve cover through a filter and back to the compressor inlet of the turbocharger. 

Specially designed valves are used to make sure the pressure is carefully controlled. To avoid 

high oil consumption and ‘fouling’ of the compressor wheel, a crankcase gas filter will separate 

a high percentage of the oil carried along by the crankcase gases. That oil is agglomerated and 

returned to the oil pan through a drain tube and check valve system. 
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CHAPTER 3: 
Task 4 – Alpha Validation Testing and Preliminary Beta 
Design 

3.1 Subsystem Validation of Commercial Vehicle Requirements 

The critical product requirements for the ISB6.7G product are gathered from Voice of the 

Customer interviews, ESW standards, and past experience with other Cummins Westport and 

Cummins Diesel products. From those inputs, a design validation plan and reporting is 

established and executed to validate the product.  

Table 4 below lists the critical deliverables for the ISB6.7G from the voice of customer inputs, 

and the results of the validation / verification exercises. 

Table 4:  Critical Deliverables from ISB6.7 G ‘Voice of Customer’ 

Deliverable 
Requirement / 

Deliverable 
Demo’d 

Date 
Validation Status 12/9/14 (Verification 

Method) 

Emissions – 
North America 

U.S. EPA / ARB / 
EMD+ 

03/30/14 Emission capability demonstrated on 
pre-Alpha engines with representative 

hardware. Same catalyst architecture as 
CWI’s ISL G engine (see Table 3). 

Greenhouse 

Gas – CH4 

Emissions 

Meet 2nd phase 
(2016) U.S. EPA 

MHD GHG 
regulations at launch 

03/30/14 Engine very close to meeting GHG 
limits without CCV. Addition of CCV 

provides significant margin to be well 
under the requirements (see Table 3). 

Noise < 80 dBA drive-by 08/01/14 Both engineering trucks (FL M2 and 
Ford F750) pass the drive-by testing 

with only minor governor tuning 
required. 

Reliability RPH – 206 RPH @ 
launch 

M3 Target reliability is difficult to 
demonstrate prior to completion of field 

tests. However, many ‘fixes’ from the 
existing CWI products have been 

integrated into ISB6.7 G and confidence 
is high based on results of the CWI 

warrant trend. 

Peak Power 260 hp @ 2400 rpm 11/13/13 Demonstrated on pre-Alpha. 

Peak Torque – 
North America 

660 lb-ft @ 1600 rpm 11/13/13 Demonstrated on pre-Alpha. 

Peak Torque – 
Europe 

900 Nm @ 1300 rpm 11/13/13 Demonstrated on pre-Alpha. 
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Deliverable 
Requirement / 

Deliverable 
Demo’d 

Date 
Validation Status 12/9/14 (Verification 

Method) 

Responsiveness 1 & 2 second torque 
capability: 

% Full Load Torque 
        1s  2s 

800 rpm 60% 90% 
1000 rpm 60% 90% 
1200 rpm 60% 90% 
1400 rpm 60% 90% 
1600 rpm 60% 90% 
1800 rpm 60% 90% 

04/30/14 Demonstrated on pre-Alpha. 

Fuel Economy 15% less than ISB 
diesel product 

7/15/14 Have run VMS simulations comparing 
ISB6.7 G to ISB diesel. Fuel economy 

per the analysis is much better than 
15% less than diesel. 

Transmissions Allison 2500 & 3000 
series automatic’s 

9/1/14 Engineering and field test units have a 
mix of both these transmissions. 

Although not yet flawless, the units are 
functional and transmission tuning is 

very near production-ready. 

Photo Credit: Cummins Westport Inc. 

 

3.1.1 Dyno Validation 

A key approach to validating the ISB6.7G is to run System Level Tests (SLTs) as developed by 

the Cummins Product Assessment Group. The SLT’s are a series of tests designed to simulate 

“life” cycle of the engine in multiple applications. The following SLT’s were applied and run on 

the ISB6.7G in 2014: SLT 2 – Thermal Cycle Test, SLT3 – Urban Bus Duty Cycle, Hot Box, Over 

Torque, Cycle Six, and Short Hour and Mapping. 

SLT 2 – Thermal Cycle Test. This test simulates full-life deep thermal cycling of the engine. It is 

designed to ensure that the power cylinder, cylinder head, and exhaust system have sufficient 

thermal cycle robustness for the life of the product. In SLT 2, the engine is cycled with hot and 

cold air, as well as water during the test to simulate very extreme conditions. In addition, water 

is sprayed on the engine externally to provide additional shock and to validate electrical 

connections. Given the extreme conditions, this test is considered the most abusive and difficult 

SLT of the series. This test is run twice for the Alpha level product and once for the Beta level 

product. Test duration is 5000 thermal cycles (approximately 750 hours).  

The variation of the exhaust temperature over one cycle of the test is shown in Figure 10. 
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Figure 10: Exhaust Port Temperatures on SLT2 Cycle 

 

Photo Credit: Cummins Westport Inc. 

 

Result of SLT2. The overall result is a pass. Engine condition at the end of the test was generally 

noted as “like new, gently worn.” The post test engine condition was recorded in Figure 11, 

Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16. Several issues were captured and will 

be tracked using the Cummins Failure Incident Review Group (FIRG) process, which is a 

fundamental reliability process to ensure that all issues are resolved prior to product launch. 

One notable issue from the test was a cracked turbine housing, seen in Figure 14, which is being 

addressed with our internal supplier: Cummins Turbo Technologies. The issue will be tracked 

using formal Cummins issue-solving processes. This issue must be addressed prior to the Beta 

phase of the project. The issue resolution will likely require a small degree of change to the 

turbine housing casting to improve robustness of the design. 
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Figure 11: Photo of SLT2 Engine Post Test (Note the Scale Formation Due to Water Spray) 

 

Photo Credit: Cummins Westport Inc. 

 

Figure 12: Photo of SLT2 Engine Post Test (Note the Scale Formation Due to Water Spray) 

 

Photo Credit: Cummins Westport Inc. 
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Figure 13: Exhaust Manifold Crack on SLT2 Engine 

 

Photo Credit: Cummins Westport Inc. 

 

Figure 14: Turbine Housing Crack on SLT2 Engine 

 

Photo Credit: Cummins Westport Inc. 

  

Crack 
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Figure 15: Photo of Combustion Face (No Cracks Present) 

 

Photo Credit: Cummins Westport Inc. 

 

Figure 16: Photo of Combustion Face (UV Crack Detection — No Cracks Present) 

 

Photo Credit: Cummins Westport Inc. 

 

SLT3 — Urban Bus Duty Cycle. This test is a 500 hour highly transient, light-duty cycle test as 

might be seen on an urban bus application. The test is broken into 3 sections. The first part of 

the test runs for 250 hours with load (simulating maximum vehicle curb weight). The second 

section runs for 50 hours without load (simulating minimum vehicle curb weight). The final 200 

hours runs under the same loading as the first part of the tests. Note also that there are some 

periods of extended idle. See Figure 17 and Figure 18, which illustrate the speed versus load 

cycle of the test. 
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Figure 17: SLT3 Duty Cycle Plot – Loaded 

 

Photo Credit: Cummins Westport Inc. 

 

Figure 18: SLT3 Duty Cycle Plot – Unloaded 

 

Photo Credit: Cummins Westport Inc. 
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Result of SLT3. The overall result is a pass with follow-on specific issues. Engine condition at 

the end of the test was generally noted as “like new, gently worn.” Notable in the engine was 

the presence of rust near the top of cylinder bore #3. The issue is being tracked through the 

Cummins FIRG process.  

Hot Box – Overheat Simulation. This test is designed to validate the engine robustness with 

respect to overheat. The test runs at rated power for 250 hours with hot intake air and hot 

coolant. The test ignores engine protection protocol, which leads to conditions that far exceed 

what is expected to be seen in normal operation. 

Result of Hot Box. The overall result is a pass with follow-on specific issues. Engine condition at 

the end of the test was generally noted as “like new, gently worn”. Notable in the engine was 

the presence of rust near the top of several cylinder bores. The issue is being tracked through 

the Cummins FIRG process.  

Over Torque (Fuel) Test –This test is a 500 hour standard endurance test with the exception of 

having increased power (approximately10 percent). This test is designed primarily to validate 

the power cylinder robustness. 

Result of Over Torque (Fuel) Test. The overall result is a pass with follow-on specific issues. 

Engine condition at the end of the test was generally noted as “like new, gently worn”. There 

were no issues from the test that require follow-up using the Cummins FIRG process.  

Cycle Six Test – This test is a 1000 hour cyclic endurance test with a cycle very similar to an 

emission DF test cycle, and is run under normal conditions (normal coolant and air 

temperature).  

Result of the Cycle Six Test. The overall result is a pass with several minor issues. Engine 

condition at the end of the test was generally noted as “like new, gently worn”. Notable in the 

engine was the presence of rust near the top of several cylinder bores. The issue is being tracked 

through the Cummins FIRG process.  

Short Hour and Mapping tests. In addition to the bigger more complex SLT tests, there are a 

number of important shorter tests that are worth mentioning. These activities, also called 

mapping, are important to the validation process. Table 5 lists some (not all) of the mapping tests 

run on the ISB6.7 G during the Alpha phase of the project. 
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Table 5: Listing of Short Hour Testing and Results 

Test Purpose (To verify…) Outcome 

Engine Valve & 
Seat Temperature 

Material selection Material selection confirmed. No 
Changes. 

Water Pump 
Verification 

Coolant flow rate and cavitation margin Flows and margin confirmed. No 
Changes. 

Emulsion Test Emulsion characteristics and to verify 
CCV solution for emulsion reduction 

Emulsion is seen mostly in CCV filter. 
Heated filter will significantly reduce the 

formation of emulsion. 

Vibration Mapping Vibration levels on critical components 
(fuel module, ignition module, engine 

control module, valve cover) 

Vibration levels measured and actions 
taken on fuel module and ignition 

module. 

Pin Joint Seizure Pin joint design/fit is robust Passed without issue. 

Piston 
Temperature 

Piston limits are not exceeded Work is being done in December 2014. 
Previous testing indicates no issues, but 

testing is beneficial on many levels. 

Photo Credit: Cummins Westport Inc. 

 

3.1.2 Vehicle Testing and Verification 

A significant amount of vehicle testing has taken place with the ISB6.7G engine to validate 

requirements. Starting in early 2014, many miles and hours of testing have been logged and are 

summarized below. 

3.1.2.1 Engineering Vehicles 

Early in 2014, our first test vehicle was running with a pre-Alpha engine. The truck was used for 

preliminary control and transmission tuning, as well as turbocharger duty cycle measurement.  

In summer of 2014, a team of engineers traveled to the Western United States to test an 

engineering vehicle in both high-altitude and very hot conditions. The first leg of the trip was to 

Colorado. There, the team conducted seven days of testing both in Denver and at higher 

altitudes. Several issues were discovered:  

• Intake manifold temperature algorithm was not tuned, which caused unnecessary faults. 

• Minor misfire events were recorded (and could be “felt”) while driving. Team inspection 

of engine components found an EGR pressure sensor leak and repaired it.  

• Turbocharger wheel speed estimator accuracy was found to be unacceptable and was re-

tuned during the trip.  

For the second phase of the trip, the team traveled to Las Vegas, Nevada. From there, day trips 

were taken into the desert to assess the engine’s response to very hot ambient conditions. 

During the trip, ambient temperature ranged from 99°F (37.22°C) to 114°F (45.56°C).  
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During the hot day trips, the following items were noted:  

• Oil temperature was near our target limits, but was not as hot as anticipated. 

Measurements indicate an approximate 20°F (11.11°C) reduction ‘in-chassis’ as 

compared to the dyno test cell under hot box conditions.  

• Engine power was acceptable at altitude with fan ‘off’. However, with fan ‘on’, fan load 

was much higher than anticipated and fan management was not optimized resulting in 

a noticeable loss in power.  

In August, the engineering vehicles were utilized to conduct a series of drive-by tests at the 

Cummins noise facility. With a few minor tweaks to the high-speed governor, both trucks (one 

automatic and one manual) passed the drive-by test. 

3.1.2.2 Field Testing 

In the spring of 2014, the team dedicated one of the engineering test vehicles to be used for a 

preliminary field test. The unit was driven on a local route in Columbus, Indiana. Over the two 

months of the test, the vehicle accumulated in excess of 2000 miles. Several issues were 

identified and are being resolved using the Cummins FIRG process. The test was terminated 

upon receipt of proper Alpha engines and commencement of Alpha field testing.  

Alpha engines were built starting in May of 2014. The first engines built were allocated to 

performance and mechanical development. Those engines were used to prepare the calibrations 

and controls for field tests commencing in the summer of 2014. Field and OEM integration 

engines followed and were built in June 2014.  

The field test team started the installation process during the third quarter (3Q) of 2014 and has 

been busy conducting installations and troubleshooting. Table 6 summarizes the actual field 

tests that are running using the ISB6.7G engine (as of December 2014). Note that many of field 

tests have not yet started, but are in the project plan. There is an aggressive plan to install those 

engines in early 2015. 
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Table 6: Listing of ISB6.7 G Field Tests and Status 

Unit Customer Detail Rating Application Miles Hours 

1 Blue Water Transit 250 HP Transit / Shuttle 5856 520 

2 Blue Water Transit 250 HP Transit / Shuttle 0 0 

3 Kwik Trip Stores 260 HP Delivery Truck 4844 142 

4 Kwik Trip Stores 260 HP Delivery Truck 13629 425 

5 Ryder Rental 240 HP MD Truck 36 26 

6 Walmart 200 HP Yard Spotter 1424 267 

7 Penske Rental 260 HP MD Truck 0 0 

8 Penske Rental 260 HP MD Truck 0 0 

9 Penske Rental 260 HP MD Truck 0 0 

10 City of Irvine 200 HP Sweeper 0 0 

11 Dina Bus 250 HP Transit / Shuttle 0 0 

Cummins Westport Sponsored (“Real World Testing” Local to Columbus, IN) 

12 Kenworth T440 260 HP MD Truck 0 0 

13 Kenworth T440 260 HP MD Truck 0 0 

14 Freightliner M2 260 HP MD Truck 0 0 

15 Thomasbilt School Bus 220 HP School Bus 0 0 

Photo Credit: Cummins Westport Inc. 

 

As can be seen in Table 6, the first five field test units were installed, tuned, and released into 

service and are accumulating miles. Several of the field units required a degree of 

troubleshooting and tuning prior to service release. Examples of issues experienced throughout 

the process include: idle instability, poor throttle response, false misfire detection, and airflow 

calculation errors. Nearly all of the issues have been resolved. None of the lingering issues have 

prevented the team from initiating testing.  

The geographical location of field tests and the application for each unit are shown in Figure 19. 
Photos of many of the planned field test applications are shown in  

Figure . 
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Figure 19: Geographical Information of Alpha Field Test Sites 

 

Photo Credit: Cummins Westport Inc. 

 

Figure 20: Photos of Field Test Chassis Platforms 

 

Photo Credit: Cummins Westport Inc. 
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3.1.3 Preliminary OEM Integration 

Cummins Westport had been working with key customers to understand requirements for 

operation and installation. Over that last year, several of key customers completed CAD 

installation checks and provided feedback to allow CWI to design components that fit within 

the identified vehicles. In addition, shared performance data allows the OEM to specify a 

cooling system and transmission that will be suitable with the engine. The data sheets have 

been created and are in the process of being published on CWI’s website, where, along with 

CAD models, all OEM’s can access critical information and begin engineering the planned 

engine product into their vehicles. 

3.2 Software and Calibration Development 

Significant progress has been made in calibration development for the ISB6.7G. The following is 

a summary of accomplishments on calibration development:  

• Cummins Insite™ tool has been released and is being used to manage field units on the 

program. The ISB6.7G has its own product ID. 70 percent of Insite features have been 

validated.  

• In conjunction with Customer Engineering, all customer software features have been 

identified. As of December 2014, 70 percent of such features have been validated.  

• Failure Mode Effects Test (FMET) is completed. 

• NDOT (torque/acceleration controller) tuning complete for Alpha level engines, along 

with speed governor tuning on engineering vehicles.  

• 80 percent of EMD+ required diagnostics are validated on engineering vehicle.  

• Transmissions tuning of Allison 2500 & 3000 series was conducted for field test 

readiness.  

The balance of work not finished will be completed in the first half of 2015 as we prepare for the 

Beta phase of the program 

3.3 Combustion, Performance, and Emissions (CPE) Development 

3.3.1 CPE Development Tasks Summary 

A significant amount of combustion, performance, and emissions development work has been 

completed in this ISB6.7G project. Task 4 work focuses on the validation of engine performance 

and the preparation and delivery of calibrations for mechanical and field validation work. 

Below is a summary of the activities that have been completed:  

• All technical requirements were identified during the early phases of the program and 

work to confirm achievability was conducted during Task 4 (see Table 4, above for 

critical performance deliverables status).  

• EGR tuning. 
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• Turbocharger wheel speed assessment and engine protection. 

• Turbocharger wastegate operation and tuning. 

• Limited space modeling was used to define spark timing constraints with respect to 

misfire, knock, and turbine inlet temperature limits. 

• Preliminary emission tuning and verification using ‘production like’ catalyst. Testing 

demonstrated emission capability with the three-way catalyst used on the ISLG engine.  

• Performance specifications, including heat rejection measurements, were released to 

critical partners in the development process. 

• End-of-Line tests with pass-fail criteria were developed for use at the engine assembly 

plant in Rocky Mount, North Carolina. The End-of-line test was used for Alpha engines 

built in May 2014.  

As previously shown in Error! Reference source not found., a family of torque curves (ratings) 

or the ISB6.7G product was developed. 

3.3.2 CPE Fuel Economy Comparison Summary 

Cummins Vehicle Mission Simulation (VMS) software is used to estimate duty cycle fuel 

consumption of the ISB6.7G and comparing to other gas and diesel engines. VMS is the value-

based analysis tool used by marketing, sales, and product engineering to simulate vehicle 

missions quickly and to gauge, communicate, and improve the value proposition of Cummins 

engines to customers. 

Below there are two tables (Table 7 and Table 8) which show data from early VMS runs for the 

ISB6.7G compared to the B5.9 Gas Plus and 2013 ISB diesel product. As can be seen in the tables, 

our initial simulations show that the ISB6.7G is significantly more fuel efficient than the B5.9 

Gas product. It should be noted that, given the age of the benchmark B-Gas engine product, a 

direct comparison is very difficult to verify. Nevertheless, the ISB6.7G is also well within the 

target of being no more than 15 percent less efficient than the diesel equivalent. 
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Table 7: Vehicle Mission Simulation Comparison – ISB6.7 G vs. 2013 ISB Diesel 

Engine 
Model 

Peak Torque 
(lb-ft @ rpm) 

Make / Model VMS 
Route 

GVW Average % Difference in Fuel 
Economy for Gas as compared to 

2013 Diesel (%) 

ISB 260 660 @ 1600 Medium 
Conventional 

Urban 
Delivery 

12000 -10.8 

ISB 260 660 @ 1600 Medium 
Conventional 

Urban 
Delivery 

17000 -9.8 

ISB 260 660 @ 1600 Medium 
Conventional 

Urban 
Delivery 

22000 -9.0 

ISB 260 660 @ 1600 Medium 
Conventional 

Urban 
Delivery 

27000 -7.8 

ISB 260 660 @ 1600 Medium 
Conventional 

Urban 
Delivery 

32000 -7.1 

ISB 300 660 @ 1600 Medium 
Conventional 

Rural 
Delivery 

22000 -5.5 

ISB 300 660 @ 1600 Medium 
Conventional 

Rural 
Delivery 

29500 -4.7 

ISB 300 660 @ 1600 Medium 
Conventional 

Rural 
Delivery 

33000 -4.3 

Photo Credit: Cummins Westport Inc. 

 

Table 8: Vehicle Mission Simulation Comparison – ISB6.7 G vs. 2002 B Gas Plus 

Engine 
Model 

Peak Torque 
(lb-ft @ rpm) 

Make / Model VMS 
Route 

GVW Average % Difference in Fuel 
Economy for ISB6.7 G as 
compare to 2002 BG+ (%) 

ISB 260 660 @ 1600 Medium 
Conventional 

Rural 
Delivery 

26000 19.0 

ISB 260 660 @ 1600 School Bus Urban 
Delivery 

26000 12.4 

ISB 260 660 @ 1600 Shuttle Bus Intercity 
Delivery 

26000 16.4 

Photo Credit: Cummins Westport Inc. 

 

3.4 Preliminary Beta Engine Design and Testing 

3.4.1 Design Changes for Beta Engines 

Several design changes are planned as summarized below:  

• The wire harness design is changing to improve fit and to accommodate several design 

changes to the engine. The only functional change to the harness is the addition of an 
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exhaust manifold pressure sensor to be used for diagnosing misfire. All other changes 

are ‘fit’ related.  

• The fuel module is being modified to:  

o Improve the manufacturability of the EGR delta P cross drillings. 

o Modify the intake manifold casting to accept a new ‘rubber coated’ steel gasket 

design. 

o Modify the air inlet connection geometry such that water will not stand next to 

the throttle plate, thus eliminating risk of ice formation and subsequent freezing 

of the throttle position. 

• The valve cover is being converted from a sand casting to high pressure die casting. This 

is being done to reduce cost and weight of the cover. This will allow the cover to behave 

very similar to the diesel cover with respect to vibration and will reduce the risk of valve 

cover gasket leakage.  

• The exhaust manifold is being modified to: 

o Solve a flange cracking issue discovered on the SLT2 test (see Figure 13). 

o Add a boss that will house a tube that will sense exhaust manifold pressure. 

• A pressure sensor and a pressure sensor tube are being added to allow for better misfire 

detection (see Figure 21). 

The turbocharger is being modified to correct a crack discovered on the SLT2 test (see  

• Figure ). This change will affect the turbine housing. In addition, there will be a new 

wastegate setting pressure for Beta. The change to the setting will improve fuel economy 

slightly. 
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Figure 21: ISB6.7 G Exhaust Manifold Pressure Sensor Tube 

 

Photo Credit: Cummins Westport Inc. 

 

3.4.2 Performance Calibration Work for Beta Engines 

The following performance related work will be completed for Beta engines in 2015:  

• Optimization of issues and concerns discovered late in the process of Alpha 

development. 

• Development of a misfire diagnostic using exhaust manifold pressure measurements 

• Cold weather testing in January 2015 (includes throttle function, throttle snaps, and 

startup). 

• Hot weather and high altitude testing to ensure that recent calibrations are tuned and 

ready for production. 

Emission certification will be conducted in late 2015 and will likely carry over into January 2016. 

3.4.3 Field Test Plans for Beta Engines 

In 2016, there will be multiple Alpha field tests installed as mention above in 2.2.2. In addition 

to the Alpha field tests, there will also be significant effort expended in deploying 

approximately nine additional Beta field tests. The customers for those field tests have not yet 

been identified. 
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CHAPTER 4: 
Task 5 – Data Collection Plan 

The data collection and analysis phase collects operational data and analyze the data for 

economic and environmental impacts. The key aspects of this task include: 

• Development of a data collection test plan encompassing:  

o Fuel economy improvements 

o Greenhouse gas reductions 

o Air quality emission reductions 

• Provide data on potential job creation, market potential, economic development, and 

increased state revenue as a result of expected future expansion. 

• Provide an estimate of the project’s energy savings and other benefits and potential 

statewide energy savings once market potential is realized. 

• Comparison of project performance and expectations provided in the proposal with 

actual project performance and accomplishments. 

4.1 Data Collection Test Plan 

The Data Collection Test plan (Table 9) targeted the alpha production intent engines in test cell 

operation with subsequent simulation and analysis. Test cell operation offers the key 

advantages of isolating the engine from vehicle effects, and therefore, provides a more 

controlled environment to conduct repeatable tests that have been conducted on previous 

versions of this engine and other engines. 

The goal is to capture data that will identify:  

• Energy savings in terms of fuel economy (miles per diesel gallon equivalent). The 

engine is operated in a test cell and run at all engine speed and load combinations to 

determine a fuel map. This fuel map can then be used in subsequent analysis to 

estimate fuel economy in various drive cycles and load conditions.  

• Tailpipe emissions including regulated air quality emissions, such as Particulate 

Matter (PM), Nitrogen Oxides (NOx), Carbon Monoxide (CO), Hydrocarbons (HC) and 

also greenhouse gases, such as Carbon Dioxide (CO2), Methane (CH4). 
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Table 9: Data Collection Test Plan 

Test Subject Test Method Measurements Obtained 

Fuel Consumption Engine dynamometer Fuel map determined at all engine load 
and speeds. 

Fuel Efficiency  Cummins Vehicle Mission Simulation 
Analytical Model 

Fuel Efficiency estimate for Class 5 to 7 
vehicle drive cycles including: 

-Truck 
-School Bus 

Air Quality 
Emissions 

Engine dynamometer operated over 
FTP and RMCSET test cycles 

NMHC 
NOx 

CO 
PM 

Greenhouse Gas 
Emissions 

Engine dynamometer operated over 
FTP and RMCSET test cycles 

CO2 

N20 
CH4 

Photo Credit: Cummins Westport Inc. 

 

4.2 Fuel Economy 

Cummins Westport’s objective for this project is to improve on the fuel economy of the CWI 5.9 

liter lean burn spark ignition natural gas engine called the B Gas Plus by 5 percent to 10 percent. 

The B Gas Plus was sold in the North American market through 2009. This fuel economy 

assessment is conducted using specific Class 5 through 7 vehicle drive cycles including truck 

and school bus duty cycles.  

Cummins Westport has mapped the fuel consumption of the 6.7 liter engine throughout the 

engine speed and load operating range during engine dynamometer testing. Cummins 

Westport Engineering then loaded these fuel maps into the Cummins vehicle mission 

simulation analytical model, which is used to predict vehicle fuel consumption and fuel 

economy based on specific vehicle, load, route, and load factor input data. Previously recorded 

CWI 5.9 liter lean burn spark ignition engine fuel maps were also loaded into the Cummins 

vehicle mission simulation model. This modeling was conducted for a variety of simulated 

Class 5 through 7 vehicle drive cycles, including truck and school bus duty cycles. This analysis 

concluded that the fuel consumption of the 6.7 liter natural gas engine ranges from 12 percent to 

18 percent better than the B Gas Plus engine in the same duty cycles, and therefore, well exceeds 

the program target. 

4.3 Greenhouse Gas Reductions 

Natural gas offers significant GHG benefits versus petroleum fuels, as documented in ARB’s 

low carbon fuel standard analysis. Table 10 summarizes the full-fuel cycle, or well-to-wheel, 

GHG emissions of ultra-low sulfur diesel fuel (ULSD) along with compressed natural gas 
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(CNG) and liquefied natural gas (LNG) from a variety of conventional and renewable fuel 

sources1. 

Table 10: Summary of ARB Low Carbon Fuel Standard Analysis 

Fuel Fuel Pathway 

Well-to-
Wheel 

Emissions  

(g CO2e/MJ) 

% GHG 
Reduction 
vs. ULSD 

Date of 
ARB 

Analysis Version 

ULSD California ULSD 98.0 - 12-Sep-12 Supplement to Version 2.1 

Conventional Natural Gas Pathways 

CNG North America NG 68.0 30.6% 27-Feb-09 Ver 2.1 

Renewable Natural Gas Pathways 

CNG Landfill Gas 11.3 88.5% 27-Feb-09 Ver 2.1 

CNG Dairy Digester Biogas 13.5 86.3% 20-Jul-09 Ver 1.0 

Photo Credit: Cummins Westport Inc. 

 

Cummins Westport has used the ARB analysis to forecast the GHG reductions associated with 

vehicles powered by the 6.7 liter natural gas engine. Based upon the ARB data in Table 10, and 

the assumptions listed in Table 11, full-fuel cycle GHG emissions were calculated, and are 

shown in Table 12 on a per vehicle per year basis. 

Sample calculation: 

25,000 miles per vehicle per year ÷ 8 mpg = 3,125 gallons per vehicle per year x 127,500 BTU per 

gallon = 398 MMBTU per vehicle per year x 1055 = 420,352 MJ per vehicle per year 

3420,352 MJ per truck per year x 98.0 g CO2e / MJ (from Table 4) = 41.2 x 106 grams CO2e per 

vehicle per year. 

Table 11: Assumptions for Per Vehicle Emissions Calculations 

Assumption: Truck 
School 

Bus 
Units 

Average Annual Mileage for Target Market 25,000 15,000 miles/vehicle/year 

Average Fuel Economy for Diesel Vehicle in Target Market 8 9 miles / gallon 

6.7 Liter Engine Fuel Economy Differential vs. Diesel 5% 9% less than diesel 

Diesel Fuel Energy Content   127,500 LHV BTU/gallon 

Joules per BTU   1055  

Photo Credit: Cummins Westport Inc. 

                                                      
1 Cummins Westport summary of ARB GHG analysis: http://www.arb.ca.gov/fuels/lcfs/lcfs.htm 
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Table 12: Annual GHG Emissions per Vehicle 

Fuel Type Vehicle 
Use 

Fuel 
Consumption 

(Gal or 
Diesel Gallon 

Equivalent 
/vehicle/yr) 

Energy Content of 
Fuel 

(mmBTU/vehicle/yr) 

Energy 
Content of 

Fuel 
(MJ/vehicle/yr) 

GHG Emissions 
(Mg 

CO2e/vehicle/yr) 

GHG 
Reduction 
vs. Diesel 

Diesel 
(ULSD) 

Truck 3,125 398 420,352 41.2 - 

School 
Bus 

1,667 213 224,188 22 - 

CNG 
(conventional 
fuel pathway) 

Truck 3,289 419 442,475 30.1 27.0% 

School 
Bus 

1,832 234 246,360 16.8 23.8% 

CNG  
(landfill gas) 

Truck 3,289 419 442,475 5.0 87.9% 

School 
Bus 

1,832 234 246,360 2.8 87.4% 

CNG  
(digester 
gas) 

Truck 3,289 419 442,475 6.0 85.6% 

School 
Bus 

1,832 234 246,360 3.3 84.9% 

Photo Credit: Cummins Westport Inc. 

 

The 6.7 liter natural gas engine will be capable of operating on either CNG or LNG, although 

most if not all applications are expected to use CNG. The ARB low carbon fuel standard full fuel 

cycle GHG emissions data summarized in Table 13 yields the following average GHG emissions 

for the various natural gas fuel pathways considered by ARB. 

Table 13: Average Full Fuel Cycle GHG Emissions for Various Fuel Pathways 

 Conventional Fuel Pathways Renewable Fuel Pathways 

Average GHG Emissions  

(Mg CO2e/vehicle/year) 
23.4 4.3 

Photo Credit: Cummins Westport Inc. 

 

For example, based on the values in Table 12, the average GHG emissions corresponding to 

conventional fuel pathways is calculated as follows: 

 Average GHG emissions = (30.1 + 16.8) ÷ 2 = 23.4 Mg CO2e per vehicle per year 

For the purpose of calculating total GHG emissions, Cummins Westport has identified a base 

case for natural gas fuel supply, assuming that 90 percent of the natural gas fuel consumed by 

the 6.7 liter natural gas –powered fleet will be derived from conventional natural gas fuel 

pathways, and 10 percent from bio-methane pathways. Cummins Westport has also identified 



38 

an upside case, which assumes that 50 percent of the fuel consumed by the fleet will be derived 

from bio-methane pathways. Table 14 quantifies the anticipated full-fuel cycle GHG emissions 

for trucks powered by the 6.7 liter natural gas engine, as a function of fuel source. 

Table 14: Average Full Fuel Cycle GHG Emissions with Varying Renewable Fuel Content 

 Base Case 
(10% Renewable Fuel) 

Upside Case 
(50% Renewable Fuel) 

Average GHG Emissions  

(Mg CO2e/vehicle/year) 
21.5 13.8 

Photo Credit: Cummins Westport Inc. 

 

For example, the average GHG emissions corresponding to the base case fuel supply is 

calculated as follows, based on the values in Table 13: 

 Average GHG emissions = 23.4 x 0.9 + 4.3 x 0.1 = 21.5 Mg CO2e / vehicle / year 

Table 15 summarizes the predicted full fuel cycle GHG benefits for the 6.7 liter natural gas 

engine versus diesel-powered Class 5 to 7 vehicles. 

Table 15: Predicted Full Fuel Cycle GHG Emissions Reductions vs. Diesel Vehicles  

 Base Case 
(10% Renewable Fuel) 

Upside Case 
(50% Renewable Fuel) 

Average GHG Emissions  

(Mg CO2e/vehicle/year) 
31.9% 56.2% 

Photo Credit: Cummins Westport Inc. 

 

For example, the GHG emission reduction corresponding to the base case fuel supply is 

calculated as follows based on the values in Table 12 and Table 16: 

GHG emission reduction = (Diesel emissions calculated by averaging of truck and bus values) – 

6.7 liter emissions) / Diesel emissions 

= (31.6 – 21.5) ÷ 31.6 = 31.9% 

U.S. EPA and the National Highway Transportation Safety Administration introduced new 

GHG and fuel consumption standards that came into effect for heavy-duty engines and vehicles 

in 2014. These regulations are not based on full-fuel cycle emissions; rather, they disregard all 

emissions produced prior to usage in the engine and vehicle, and are based on tank-to-wheels 

emissions. Cummins Westport intends to launch the 6.7 liter natural gas engine in compliance 

with the first phase of the U.S. EPA and National Highway Transportation Safety 

Administration regulations. Preliminary GHG emission data indicates that the 6.7 liter engine 

will achieve the first phase of GHG emission standards based on the current design, as shown 

previously shown in Table 3. Additional emission testing throughout the duration of the engine 
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development program is expected to confirm that the launch design will achieve the first phase 

of GHG regulations. 

4.4 Criteria Pollutant Emissions 

The 6.7 liter engine will be certified to exceed U.S. EPA/ARB emission standards. Preliminary 
emission testing of the 6.7 liter engine indicates emissions below the standards as shown in  

Table 3. Further tuning will be done prior to product certification and launch. 

4.5 Economic Benefit 

The project is expected to address the shortage of natural gas products available to commercial 

vehicle markets in California and elsewhere, and to optimize the performance and fuel 

economy of spark-ignited natural gas engines in Class 3 through 7 truck and bus applications. 

By developing and subsequently commercializing a low emission, high performance, high 

efficiency 6.7 liter natural gas engine for these applications, a viable alternative to diesel engines 

currently serving this market will be made available. The natural gas engines currently 

available to serve these applications, consisting mostly of after-market conversions, are not 

considered optimized for fuel efficient performance. Accordingly, the natural gas ratepayers 

who purchase the proposed new 6.7 liter natural gas engines in the future are expected to 

directly benefit by cost savings per mile traveled. This higher efficiency will also reduce the 

emissions of criteria pollutants and GHGs per mile traveled. 

Natural gas ratepayers will also benefit from reduced consumption of diesel fuel as the 6.7 liter 

natural gas engine displaces diesel in the target market application. Natural gas use will lessen 

petroleum imports used for affected markets. This reduced demand for diesel should enable 

gasoline production from capacity constrained refinery industry that may help mitigate 

volatility in gasoline prices.  

GHG emissions and particulate matter from natural gas engines is lower compared to diesel 

engines. The magnitude of the GHG emission reductions enabled by ISB6.7 G-powered vehicles 

will increase considerably over time as renewable natural gas pathways comprise more of the 

California natural gas fuel mix.  

Trucking is critical to the United States and California economy. Because of the trucking 

industry’s importance to commerce and because of its large employment base, it is very 

important that environmentally responsive technologies are developed that enable the industry 

to remain a vital component of the State’s economic future. Trucks haul 69 percent of all freight 

tonnage, and collect 84 cents of every dollar spent on domestic freight transportation. There are 

almost nine million people in trucking-related jobs, including over three million truck drivers. 

About 15 percent of trucking jobs are in manufacturing, in plants across North America. It 

should be noted that most trucks used in the United States are designed for the North American 

market, in contrast to the light-duty truck market. At present, there is very little competition 

from imported vehicles because of differing regulations and customer needs. This includes 

component suppliers such as CNG cylinder manufacturers like SCI and Luxfer (operating in 

California).  
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Commercial availability of the ISB6.7 G engine will be a key enabler of natural gas adoption in 

the Class 5 to 7 truck market as well as the school bus and shuttle bus markets, which in turn 

will significantly increase demand for natural gas fueling stations. Jobs will be created to build 

many more natural gas fueling stations, which in turn will create employment for component 

suppliers and trades-people. Note that Clean Energy Inc. (a California-based company) is the 

nation’s leading provider of natural gas fueling station infrastructure. Increased natural gas 

demand, along with promotion and incentives for bio methane production, will create 

permanent jobs related to collection, treatment, dispensing, and distribution of bio methane for 

transportation purposes from renewable resources including landfills, dairies, and sewage 

treatment facilities. The biogas industry is in its infancy in North America and throughout the 

world; therefore, California’s leadership position at developing this market is likely to enable 

California bio methane technology providers to replicate their products and services 

worldwide. 

4.6 Energy Savings 

The 2011 Integrated Energy Policy Report2 provides a summary of priority energy issues 

currently facing California. This project supports several key goals, initiatives, and demand 

scenarios in this report. One main goal is the displacement of petroleum in the transportation 

sector and this project supports two of the report’s general strategies to this end; increasing fuel 

efficiency in the fleet of vehicles, engines, aircraft, and vessels, and using non-petroleum fuels. 

The report states:  

Natural gas vehicles are an attractive alternative to medium- and heavy-duty fleet 

owners and operators who have concerns with the cost of diesel fuel resulting from 

price volatility and the economic downturn, as well as compliance with air quality 

standards. Additionally, natural gas vehicles have been shown to have GHG reductions 

of between 11 and 16 percent compared to their diesel counterparts. If using waste- 

derived bio methane instead of conventional natural gas, however, these vehicles can 

achieve GHG reductions of roughly 85 percent below diesel counterparts. 

The engine platform developed in this project will be uniquely suited for Class 5 through 7 

commercial vehicle markets because it will have the right attributes (displacement, weight, 

envelope size, and performance) to appeal to this broad customer base. It has the ability to 

operate with bio methane in blends or with 100 percent bio methane without modification of 

engine hardware or calibrations, provided that the fuel composition meets CWI’s fuel 

specifications. The current fleet of medium and heavy-duty trucks in California is 

approximately 632,000 and with the release of the ISB6.7 G, along with the other natural gas 

engines developed by CWI, the majority of future vehicle acquisitions in this sector will have 

the opportunity to select natural gas instead of gasoline or diesel as a fuel source. 

                                                      
2 California Energy Commission, 2011. 2011 Integrated Energy Policy Report. Publication Number: CEC-

100-2011-001-CMF 
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Another key initiative of the California Energy Policy supported by this project is energy 

security. The use of natural gas as a vehicle fuel directly leads to the energy security of 

California and the country. Two scenarios were established in the IEPR Report in respect to the 

potential of future alternative fuel use in the state and this engine assists in the goal of meeting 

the higher alternative fuel use path. 

In respect to future energy policy, this engine platform will hopefully establish lower NOx 

certifications than ever considered before for internal combustion engines as well as having the 

potential to increase the displaced petroleum in the transportation sector above even the 

aforementioned high scenario. 

4.7 Verification of Critical Engine Performance Targets 

The engine has specific critical performance deliverables that were verified early in the pre 

Alpha process and some again in the Alpha process.  These targets are defined by gathering 

critical inputs from key customers in Voice of the Customer Interviews. Table 4 shows our 

targets and a result of our testing. 

  



42 

CHAPTER 5: 
Task 6 – Technology Transfer Activities 

5.1 Technology Transfer Plan 

All CWI product development projects follow the Cummins process for developing, validating, 

and commercializing new engines. It is a rigorous and comprehensive process addressing all 

areas to define, design, and develop the product for the market—including technical, 

manufacturing, purchasing, marketing, customer engineering, and customer care areas. The 

process is broken into various stages with pre-defined tasks to be completed before moving 

onto the next phase of development.  

Within this product development structure are various engine design phases—including 

Concept, Pre-Alpha, Alpha, and Beta—Limited Production, and Production. The structure 

culminates with commercial launch of the Production engine design. The scope of this project 

carries the development of the ISB6.7 G engine through to the Alpha engine design, build, and 

validation testing. The Beta phase through to commercialization is not included in the scope of 

this project, but following the successful completion of the Alpha phase has been initiated.  

A cross-functional team, or Core Team, is assembled with representation from each of the areas 

involved in the product development process. It is within this Core Team that the individual 

area development plans are pulled together to form the complete product development plan 

and a program schedule to ensure completeness and timeliness. A high-level program schedule 

for the ISB6.7 G program is shown in Figure . Throughout the development process the Core 

Team meets regularly to track the progress as well as identify challenges which need to be 

addressed through appropriate mitigating action ensuring potential consequences are 

controlled. 
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Figure 22: ISB6.7 G Program Schedule 

 

Photo Credit: Cummins Westport Inc. 

 

At various stages and within various areas of this product development process, there are 

numerous tasks where the knowledge gained in this development process is transferred outside 

of CWI to the various external stakeholders and results in a commercial product available to the 

public. This product is expected to be capable of meeting customer requirements. A summary of 

the knowledge transfer is shown in Table 16. 

These external stakeholders include the vehicle OEM’s, such as Peterbilt, Kenworth, 

Freightliner, Thomas Built Bus, and so forth, that will offer the engine in their vehicles. Each of 

these vehicle OEM’s already offers the Cummins ISB6.7 diesel engine, which makes the vehicle 

integration portion of the process easier but not trivial. These stakeholders are engaged by the 

Marketing and Customer Engineering groups at the start of the development process to 

understand the path to market and feed in the voice of the customer. As the development 

process progresses, continued interaction between CWI and the vehicle OEM’s focuses on 

transferring newly gained information on the engine design, including the physical fit and 

interface of the engine as well as performance attributes.  

The Customer Engineering group also provides Off-Engine Fuel System Integrators with engine 

fuel requirements to ensure the fuel is in the appropriate condition before entering the engine. 

This information is also shared with refueling station providers and the fuel providers to 

educate and ensure quality product is available to customer fleets to power these engines. 

Towards the end of the technical development activities and prior to commercially launching 

the product, the Technical team submits the prescribed criteria pollutant and greenhouse gas 

emission test data to the respective government agencies, such as U.S. EPA and ARB, for engine 
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certification. The U.S. EPA and ARB then make this emission test data available to the public in 

the form of Certificates of Conformity and Executive Orders, respectively.  

The Customer Care group develops the extensive service material—including repair manuals, 

parts lists, training materials, and so forth—and delivers these to the Cummins Distribution 

network and Cummins Service network throughout North America and internationally.  

CWI marketing, in collaboration with Cummins marketing, develops the sales and marketing 

literature, advertisements, and promotional materials. There is heavy CWI and CMI presence at 

trade shows to promote and educate vehicle OEM’s and fleets as well as government agencies 

on the technical aspects and benefits of the CWI engines.  

Table 16: CWI External Stakeholder Information Transfer Summary 

CWI Core Team Area Information Transferred External Stakeholder 

Technical Engine emission profiles U.S. EPA & ARB 

Manufacturing Engine details, including comparison to 
existing engine products 

Cummins Engine Plant 

Purchasing Part specifications 
Commercial details 

Suppliers 

Marketing Product attributes in terms of Voice of 
Customer 

Marketing literature, advertisement, and 
promotional materials. 

Vehicle OEM’s 
Fleets 

Government Agencies 

Customer Engineering Engine performance details 
Torque & power curves 

Installation models & drawings 
Wiring drawings & interface 

Application Engineering Bulletins 

Vehicle OEM’s 
Cummins Distribution network 

Cummins Service network 

Engine fuel requirements Off-engine fuel system integrators 
Refueling station providers 

Fuel providers 

Customer Care Maintenance schedules 
Repair manuals 

Replacement parts lists 
Training materials 

Cummins Distributors  
Fleet Maintenance Departments 

Photo Credit: Cummins Westport Inc. 

 

5.2 Project End Users 

Although this project does not result in the commercialization of the ISB6.7 G engine because 

there is still significant work required to bring this product to the market, the intended uses of 

the product is clearly identified.  
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CWI’s target markets for the ISB6.7 G engine include the following applications and chassis 

platforms: 

• School buses, particularly Type C (large, front-engine, conventional style buses with a 

hood and front fender assembly, with the entrance door located behind the front axle, 

and with seating capacity up to 77 passengers) and Type D (large flat front transit 

buses that are typically rear-engine with the entrance door located ahead of the front 

axle and with seating capacity up to 90 passengers). 

• Medium-duty trucks, which are used in a variety of applications including pickup and 

delivery, food and beverage distribution, package delivery, municipal and utility work 

trucks, and so forth.  

• Yard tractors, also known as yard spotters, yard hostlers, yard jockeys, yard goats, or 

terminal tractors. 

• Shuttle buses, such as the ones used at airports. 

• Specialized municipal works vehicles, such as street sweepers. 

All of these vehicle applications are commonly used throughout California. California has over 

21,000 school buses3, and more than 10 percent of all medium- and heavy-duty trucks in the 

nation are registered in California, which is more than any other state4.  

Based on CWI’s extensive discussions with OEMs and end-users in the target markets, as well 

as CWI’s review of historical Cummins diesel engine sales data to North American OEMs, the 

dominant engine displacement node in the target markets is 6.7 liters, and the predominant 

power and torque ranges are 200 to 260 hp and 500 to 660 lb-ft torque. Therefore, the ISB6.7 G 

engine will have the right attributes (displacement, weight, envelope size, and performance) to 

appeal to many customers throughout the target markets. 

The path to market for this product is through vehicle OEM’s. Typically products are 

commercialized with Launch Partners initially and then subsequent partners and vehicle 

options are added post launch as the market and demand grows and resources become 

available. The Launch Partners planned for the ISB6.7 G cover the intended use of the product 

and are shown in Table 17. 

  

                                                      
3 http://www.schoolbusfleet.com/files/stats/SBFFB13-stats-stateby-state.pdf 

4 U.S. Census Bureau Vehicle Inventory and Use Survey, Table A: 

http://www.census.gov/prod/ec02/ec02tv-us.pdf 
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Table 17: ISB6.7 G OEM Availability at Commercial Launch 

OEM Peterbilt Kenworth Freightliner 

Thomas 
Built 
Bus DINA 

ADL / New 
Flyer TICO 

Model 
325, 330, 
337, 348 

T170, 
T270, T370 

M2-106, 
108SD C2 

Linner G, 
Picker G MiDi E200 Pro-Spotter 

Engine ISB6.7 G ISB6.7 G ISB6.7 G ISB6.7 G ISB6.7 G ISB6.7 G ISB6.7 G 

Application Truck Truck Truck 
School 
Bus Shuttle Bus Shuttle Bus 

Yard 
Spotter 

Availability 
2016 
Launch 
Partner 

2016 
Launch 
Partner 

2016 
Launch 
Partner 

2016 
Launch 
Partner 

2016 
Launch 
Partner 

2016 
Launch 
Partner 

2016  
Launch 
Partner 

Photo Credit: Cummins Westport Inc. 
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CHAPTER 6: 
Task 7 – Production Readiness Plan 

6.1 Production Readiness 

The ISB6.7 G production plan has always included manufacturing the product in the Cummins 

RMEP located in North Carolina (Figure 23). This facility is currently the production plant for 

the ISB, ISC, and ISL family of engine products serving a large number of applications 

worldwide. Most closely related to the ISB6.7 G are the ISB6.7 diesel and the ISL G natural gas 

engines, both produced at the RMEP facility. 

Figure 23: Rocky Mount Engine Plant (RMEP) 

 

Photo Credit: Cummins Westport Inc. 

 

The manufacturing of the ISB6.7 G is a derivation of the existing ISB6.7 diesel and ISL G natural 

gas engine platforms manufactured at RMEP, and will utilize the existing assembly line in its 

entirety. The ISB6.7 G final assembly will start at the same point in the assembly line as the 

other products produced at RMEP, beginning with the installation of the crankshaft into the 

engine block. All manufacturing processes unique for natural gas production, previously 

created to facilitate the production of the ISL G, will be utilized for the production of the ISB6.7 

G. There are no new requirements on the plant for manufacturing the ISB6.7 G related to safety, 

emissions compliance, assembly, or acceptance testing and shipping. Adding the ISB6.7 G is 

virtually transparent to the existing plant requirements, already in place for the ISL G and 

ISB6.7 diesel. Therefore, each installation station on the RMEP production line must be capable 

of accommodating diesel or NG engines without changing tooling or technicians. 

The production plan for the ISB6.7 G has been developed based on a strategy that the assembly 

of the new engine will be integrated into an existing engine assembly line within the company. 



48 

An assessment has been made to identify the similarities and the differences between existing 

engine designs and the new engine design. The differences have driven process changes in the 

existing line (Figure 24). The manufacturing engineering personnel have worked with the 

design engineering personnel to minimize the differences and to optimize the design from a 

manufacturing perspective without compromising the integrity of the design.  

Figure 24: RMEP Production Assembly Line 

 

Photo Credit: Cummins Westport Inc. 

 

A preliminary assembly process has been defined. The process has been tested by building 

approximately 32 engines as part of a prototype engine build event. Issues identified during this 

build have been logged and a joint effort between manufacturing engineering and design 

engineering is in process to resolve each issue. The proposed design changes identified during 

the Alpha engine build are being evaluated in an off-line build area (Figure 25) prior to being 

proven and validated in the main assembly process. A production process validation build 

(Beta) is planned for mid-2015 to ensure the build issues have been resolved and to identify any 

new build issues. RMEP Operations staff used the Alpha build to assess the cycle-time to 

complete ISB6.7 G-unique installations and then determined which installation station should 

perform each operation. This was done to ensure that the overall production line remained 

balanced and that no single installation station became the choke point for the production line 

during other engine model production. 
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Figure 25: RMEP Off-Line Build Area 

 

Photo Credit: Cummins Westport Inc. 

 

There is a change on the cylinder head machining line to accommodate the ISB6.7 G cylinder 

head. Since the ISB6.7 G is based on the ISB6.7 diesel version of the engine, it uses the same 

cylinder head casting as the diesel version, but needs to incorporate accommodations for spark 

plugs (one per cylinder). The original diesel cylinder head casting was used for the ISB7.6 G 

design to maintain the majority of machining process on the cylinder head machining line. This 

has been evaluated and a process has been defined using the current high volume machining 

line along with an off-line machining cell for new features. The cylinder head (machining and 

assembly) line creates finished cylinder head sub-assemblies that feed into the main engine 

assembly line. These are finished cylinder heads ready for assembly to the engine. 

The new off-line cell includes a CNC machining center and a press machine to install valve 

seats. The cylinder heads will be machined through the first half of the existing machining line, 

then moved to the off-line cell for the unique features, and then returned to the existing 

machining line to complete the machining process. The CNC machine is flexible and able to 

address all the new features, but restricts the capacity due to the time to machine each part. 

Additional capacity can be added by duplicating the CNC machine with additional CNC 

machines in the cell. Based on the forecasted volume for the ISB6.7 G in its first six years of 

production, the single CNC machining center is capable of maintaining a steady supply of 

cylinder heads to meet production needs. If production volumes exceed the forecast, RMEP will 

be able to continue cylinder head machining and assembly on additional shifts to keep up with 

demand. RMEP also maintains an annual capital spending plan that takes into account 

procurement of additional machining center tooling should the production forecast outpace the 

existing machining and assembly capability. This plan includes options for increasing 
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machining and assembly output within and outside of the plant prior to acquiring additional 

flexible machining centers. 

The new CNC machining center for the ISB6.7 G cylinder head has been validated on both the 

pre-Alpha and Alpha ISB6.7 G engine builds. This new machining center will be used for the 

upcoming Beta build in 2015 and then for full production in 2016 and beyond. 

The business systems that are being used in the manufacturing plant are capable of integrating 

the new engine into the plant without changes or additions. Manning levels have been 

reviewed and it is expected that one additional operator per shift will be required to man the 

offline machining cell. Otherwise no additional head count will be required. 

There are no additional requirements stemming from the production of the ISB6.7 G affecting 

RMEP’s current process for the use of hazardous or non-recyclable materials. The plants current 

processes adequately support the ISB6.7 G production requirements and meet all Cummins 

manufacturing requirements and standards. 

A preliminary ramp up plan has been defined that will begin with a limited production phase 

in 2016 and ramp up to full production levels by the end of 2016. Limited production will start 

exclusively for engines to be used in the school bus market and will be limited to the lower 

horsepower ratings (200HP and 220HP). This ramp up plan will begin in April of 2016 to 

accommodate the buying cycle for the school bus market. The production ramp will be 

coordinated with the school bus OEMs and engine production will be managed based on 

production quality. As end-of-line testing / inspection issues are minimized and quality targets 

are achieved, production volumes will be allowed to increase. The other vehicle markets, which 

include truck, shuttle bus, yard spotter, and street sweeper, will be phased into production 

early in the fourth quarter of 2016. This will include the higher horsepower ratings of 240HP 

and 250HP. 

Throughout Task 7, the Cummins Purchasing group identified and validated production 

suppliers for all natural gas-unique components in the ISB6.7 G design. Greater than 80 percent 

of the individual components in the ISB6.7 G design are identical to the components used by 

Cummins for ISB6.7 diesel engine production. Of the remaining 20 percent, some parts are 

common with the ISL G. The components unique to ISB6.7 G include the cylinder head, pistons, 

turbo-charger, fuel module, ECM, ignition system, spark plugs, valve cover, and wire harness. 

For each of these unique components, the Purchasing group identified a production supplier 

with high volume production capability, then provided design specifications to the supplier. In 

many cases the production suppliers provided design input and feedback to optimize design 

for manufacturability and identified potential cost saving opportunities. In later stages of the 

program, the Purchasing groups (both in Columbus, IN and at RMEP) will work with suppliers 

to confirm high-volume production capability at negotiated cost targets, to ensure supplier 

adherence to CWI’s component specifications, and to ensure that all suppliers were validated 

and approved in accordance with industry standard PPAP requirements (Production Part 

Approval Process). The PPAP process requires each supplier to produce a batch of components 

using production tooling and production processes, and to inspect each component to ensure 



51 

compliance with the specified manufacturing tolerances and performance criteria. All PPAP 

work continues to support final release of the unique hardware required for the limited 

production launch, which is scheduled to begin production in April of 2016. Long lead items 

such as exhaust manifold, wiring harness, and piston have had funding authorized for 

production tooling, so parts made from production tooling can be used for the Beta build 

validated through test cell and field testing in time for start of limited production. 

In production, ISB6.7 G engines will be ordered electronically by OEMs using the Cummins On-

Line Specifications (COLS) order entry process that Cummins employs for diesel engine orders. 

The COLS order entry system is linked to the component and options database that is 

maintained by Cummins and CWI Engineering, whereby individual components are 

categorized into various option groupings (such as engine block vs. cylinder head vs. turbo-

charger vs. exhaust manifold vs. fuel filter and so on) Details of the ISB6.7 G option release 

status are described in the Task 4 - “Alpha Validation Testing and Preliminary Beta Design” 

report for this project. All Alpha engines were ordered via the COLS online order entry process, 

thus validating the order entry process prior to initiating commercial launch of the ISB6.7 G 

engine. The same process on line process using COLS order entry system will be used for the 

Beta engine orders as well. 

Figure 26: ISB6.7 G Alpha Engine Ready to Ship from RMEP 

 

Photo Credit: Cummins Westport Inc. 
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Cummins and Cummins Westport Application Engineers worked directly with vehicle OEMs 

to ensure the engine will fit in a wide range of OEM chassis models, and to ensure that each 

OEM’s design meets CWI’s installation requirements and recommendations, such as electrical 

interface specifications, engine coolant and charge air cooling capability, and correct sizing and 

routing of fuel delivery hoses. Throughout Task 7, CWI worked with a several truck OEMs 

including Freightliner, Kenworth, Peterbilt, Thomas Built Bus, Dina, ADL / New Flyer, and 

TICO. The Application Engineers provided each OEM with CAD models for the Alpha and Beta 

engines. The Beta engine design incorporated feedback from the OEMs to optimize the engine 

fit in their respective truck chassis. The team has effectively worked with all OEM launch 

partners in efforts to minimize proliferation of engine options and standardize on an engine 

configuration that requires few option changes between OEM chassis variations. The OEM 

launch partners along with the application and chassis model(s) are shown previously in Table 

17. 

The ISB6.7 G Alpha engine build was conducted in Q2 2014 and involved 38 engines. The OEMs 

continued to provide installation feedback and design change requests based on their Alpha 

installation experience. CWI incorporated that feedback into a final design iteration and a Beta 

engine build is planned for July 2015. CWI conducted the Alpha build to validate all production 

processes including order entry, RMEP production processes, and hot-test. The Alpha engines 

were delivered to truck OEMs to validate each OEM’s production readiness in their truck 

assembly plants (Figure 27). Beta engines will be used for the same purpose. The Beta build will 

consist of an estimated 20 engines built and tested at RMEP using production processes to 

further validate production readiness 

Figure 27: ISB6.7 G Alpha Engine Installed in Thomas Bus C2 Chassis 

 

Photo Credit: Cummins Westport Inc. 
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The truck OEMs used ISB6.7 G Alpha and will use Beta engines to complete the final testing to 

validate that their engine installations meet their design specifications and also satisfy CWI’s 

engine installation requirements and recommendations. Prior to production launch, CWI and 

the OEMs completed the Cummins installation quality assurance process, whereby the OEMs 

provide extensive data and design specifications documenting the engine installation in each 

vehicle model, along with data demonstrating compliance with critical vehicle performance 

requirements such as the ability to accommodate the engine coolant and charge air heat 

rejection rates with the engine operating at rated power in high ambient temperatures. 
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CHAPTER 7: 
Conclusion and Recommendations 

7.1 Conclusion 

As part of the agreement, the research team sought to: 

 Design, develop, and demonstrate (on dynamometer) an Alpha stage 6.7 liter medium 

duty natural gas engine that can be certified at or below U.S. EPA / ARB 2013 emission 

standards (g/bhp-hr): 0.20 NOx, 0.14 NMHC, 0.01 PM, 15.5 CO  

• Demonstrate a peak rating of 260 hp and 660 lbs-ft. peak torque  

•  Improve fuel economy by 5 percent to 10 percent when compared to CWI’s 5.9 liter lean 

burn spark ignition natural gas engine that CWI sold in the North American market 

through 2009. This assessment will be measured by analyzing fuel maps over specific 

Class 5 through 7 truck and school bus duty cycles. 

 Demonstrate GHG emissions (CO2, CH4, and N2O) that will enable emission certification 

at or below the U.S. EPA 2017 GHG emission standards 

All of the aforementioned objectives have been achieved in this project. CWI decided to base the 

new natural gas engine development on the new ISB 2013 diesel engine platform and refer to 

the natural gas engine as the ISB6.7 G engine.  

The pre-Alpha phase of the development process defined and verified the engine architecture. 

Through analytical models and calculations and via dynamometer testing, initial verification of 

performance targets were achieved. The learning gained from the pre-Alpha engine operation 

was used to optimize and create a production intent engine and engine component designs.  

A number of Alpha engines were built at the Rocky Mount Engine Plant utilizing the 

production assembly line and utilized in both engineering test cells and installed in vehicles for 

further real world testing. These Alpha engines were used to further assess the design 

capability to meet key performance targets gathered from Voice of the Customer interviews, 

ESW (Engineering Standard Work) standards, and past experience with other Cummins 

Westport and Cummins Diesel products. Preliminary emission, fuel consumption, and GHG 

data from the test cells shows that the engine design achieves the design targets for the 

program. CWI is continuing additional development work to further validate the engine design 

in preparation for emission certification and commercial launch. 

This Energy Commission-sponsored project has ended with the Alpha engine design, build, and 

validation testing. The Beta phase through to commercialization is not included in the scope of 

this sponsored project, but it is underway and will continue into 2016. CWI has followed the 

Cummins’ process for developing, validating, and commercializing new engines. This process 

brings together a cross-functional Core Team with defined tasks during each phase of the 

development. From the start of the development process and through to the commercialization 

of the product, CWI has engaged external stakeholders including Cummins Distribution and 
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Service networks, Government agencies such as U.S. EPA and ARB, and fleets to transfer the 

knowledge gained, experimental results, and lessons learned. All OEM launch partners are 

committed and have either validated their installations using Alpha engines or will do so using 

Beta engines. All OEMs will be required to comply with Cummins installation quality assurance 

requirements prior to approval for receiving production engine shipments, to insure quality 

The RMEP facility is currently in production with both the ISL G and ISB6.7 diesel products 

(parent products). ISB6.7 G is a streamlined addition to the current production line, requiring 

very few process changes from those of the ISB6.7 diesel or the ISL G. The Beta engine build will 

continue into 2016 and will be comprised of greater than 80 percent production parts. New 

tooling for the ISB6.7 G cylinder head has been validated on the Alpha build engines and will 

be further validated on the upcoming Beta engine build prior to full production. 

7.2 Recommendations 

CWI recommends proceeding with the next stage of the overall ISB6.7 G engine development, 

demonstration, and commercialization, which will include the following activities: 

 Field demonstrations with end-user customers to demonstrate engine reliability and 

durability, and to establish appropriate scheduled maintenance intervals. 

 Calibration development and optimization to achieve program fuel economy targets. 

 Continued accelerated testing to demonstrate component, sub-system, and engine 

durability. 

 Volume-manufacturing of ISB6.7 G engines via scheduled Beta builds at RMEP 

 Emission certification testing, including demonstrating emission durability over the U.S. 

EPA / ARB-prescribed useful life for medium-heavy duty engines. 

 Vehicle integration activities with Class 5 to 7 vehicle manufacturers, including 

installation quality assurance reviews to ensure that all engine installation requirements 

and recommendations are met. 

CWI has initiated the next phase of the development work, with an objective of continuing Beta 

engine build into 2016 and adding Beta engines to the existing Alpha customer field 

demonstrations. This leads to commercial availability of the ISB6.7 G engine in a broad range of 

Class 5 to 7 vehicles, including medium duty trucks, school buses, shuttle buses, yard tractors, 

and municipal works vehicles such as street sweepers, in 2016. CWI anticipates that the total 

expense to enable ISB6.7 G commercial availability will be in the range of $2 million to $4 

million. 
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GLOSSARY 

Term Definition 

CAD Computer Assisted Design 

CCV Closed Crankcase Ventilation 

CH4 Methane 

CISPR English: Special international committee on radio interference 

CNG Compressed Natural Gas 

CO Carbon Monoxide 

CO2 Carbon Dioxide 

CWI Cummins Westport Inc. 

DF Deterioration Factor 

ECM Electronic Control Module 

EGR Exhaust Gas Recirculation 

EMD Engine Manufacture Diagnostics 

FIRG Failure Incident Review Group 

FTP Federal Test Procedure 

GHG Greenhouse Gas 

GVW Gross Vehicle Weight 

ICM Ignition control module  

LNG Liquefied Natural Gas 

NOx Nitrogen Oxides 

NMHC Nonmethane Hydrocarbons 

OBD On-Board Diagnostics 

OEM Original Equipment Manufacturer 

PM Particulate Matter 

RMCSET Ramped Mode Cycle Supplemental Emissions 

RMEP Rocky Mount Engine Plant 
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SESI Stoichiometric, EGR, Spark Ignition 

SLT System Level Test 

ULSD Ultra Low Sulfur Diesel 

U.S. EPA United States Environmental Protection Agency 
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